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Abstract 

A new joint probability distribution of three normal- 
ized structure factors is derived for the case of N 
equal atoms in the space group P1. The distribution 
appears in a series expansion. Convergence of the 
series is obtained by inclusion of higher-order terms 
up to order N -5, although with the exception of terms 
up to order N -1/2 the distribution does not contain 
all possible terms. Test results show improved esti- 
mates of the absolute value of the triplet phase sum 
when compared with the Cochran distribution. In 
particular, the systematic errors are reduced 
appreciably. 

1. Introduction 

If a sufficient number of linear independent structure 
invariants (s.i.'s) ~ul + . . .  + ~n, = Oi were known, the 
phases ~n could be calculated and the structure could 
be solved. In practice, however, the 0i are not known, 
unless information can be obtained by anomalous 
scattering (Kroon, Spek & Krabbendam, 1977; 
Heinerman, Krabbendam, Kroon & Spek, 1978) or 
dynamical diffraction experiments (Post, 1977, 1979). 
In the absence of knowledge of the qJi, a possible 
approach to the structure determination is the estima- 
tion of cos ~3 or ]03[, the absolute value of the triplet 
phase sum ~3, on the basis of the ]EHI values. Starting 
from the linearization of products of structure factors 
and using probabilistic calculations, several authors 
have shown how to employ estimated cos ~3 values 
and enantiomorph-specific cosine seminvariants in 

practical procedures (Karle & Hauptman, 1958; 
Hauptman, Fisher, Hancock & Norton, 1969; Haupt- 
man, Fisher & Weeks, 1971; Hauptman, 1972). 
Olthof, Sint and Schenk have shown that empirical 
estimates of [~3[ can also be useful in enantiomorph- 
specific procedures (Olthof, Sint & Schenk, 1979; 
Olthof & Schenk, 1981; Olthof, 1981). 

Instead of empirical estimates, theoretical esti- 
mates might also be used. Up till now, several joint 
probability distribution (j.p.d.) expressions involving 
the three complex-valued normalized structure fac- 
tors (n.s.f.'s) EHI, En2 and EHI+H2 have been 
developed from which triplet phase sum estimates 
may be obtained (e.g. Cochran, 1955; Bertaut, 1956; 
Karle & Hauptman, 1956, 1958; Naya, Nitta & Oda, 
1965; Tsoucaris 1970; Hauptman, 1971; Giacovazzo, 
1974; Heinerman, 1977; Heinerman, Krabbendam & 
Kroon, 1977). Recently it was shown that a further 
improvement might be gained by including all struc- 
ture factors in the j.p.d, derivation (Giacovazzo, 
1977b; Cascarano et al., 1984). The distributions 
appear either in an exponential or in a series- 
expansion form. The exponential expressions, e.g. the 
well known Cochran distribution [Cochran (1955); 
see also (1.17) in Appendix I of the present paper] 
are correct only up to order N -I/2 which may result 
in systematically incorrect estimates, in particular for 
smaller values of N. The j.p.d.'s in series-expansion 
form may also lead to incorrect estimates. These errors 
are the result of insufficient convergence of the series. 
Several procedures have been suggested to improve 
this convergence, for example the transformation of 
the series expansion into an exponential (e.g. Bertaut, 
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310 A NEW JOINT PROBABILITY DISTRIBUTION 

1960; Karle 1972; Karle & Gilardi, 1973). The 
inclusion of higher-order terms, i.e. terms depending 
on higher order of N -t/2, is another possibility to 
improve convergence of a series expansion. The last 
approach is explored in this paper. 

The j.p.d.'s mentioned are in fact based on the use 
of the moments-cumulants  transformation for obtain- 
ing the characteristic function (c.f.). With this trans- 
formation, the inclusion of higher-order moments 
increases quickly the number of terms to be included 
in the final series expansion (Klug, 1958; Naya, Nitta 
& Oda, 1965; Peschar & Schenk, 1986). In order to 
avoid this, an alternative derivation of a j.p.d, of three 
n.s.f.'s is presented, valid for N equal atoms in space 
group P1. The j.p.d, aimed for will be obtained via 
the calculation of the c.f. For the calculations, the 
atomic coordinates are chosen to be the primitive 
random variables (p.r.v.'s), because of the relative 
ease of the mathematical calculations [for a dis- 
cussion of the preferable use of either the atomic 
coordinates or the indices as the p.r.v.'s see e.g. 
Hauptman (1975), Heinerman (1977), Giacovazzo 
(1977a, 1980)]. In contrast with existing methods, no 
use is made of the moments-cumulants transforma- 
tion for the calculation of the c.f. Instead an approxi- 
mation formula is applied such that the initial series 
expansion of the c.f., involving the moments, can be 
written in an integrable form. The resulting series 
expansion contains a large number of higher-order 
terms, although not as many as by using the moments-  
cumulants transformation. The derivation of success- 
ive terms in the final series-expansion expression is 
done with the help of a computer program. Inclusion 
of terms up to order N -5 ensures sufficient conver- 
gence, as is shown by test results. Thus, although it 
cannot be claimed that the resulting joint probability 
distribution is correct to any order of N greater than 
N -t/E , the inclusion of the present selection of higher- 
order terms is sufficient to obtain a converging series. 
Finally, on the basis of test results for some model 
structures in space group P1, the new j.p.d, is shown 
to compare favourably with the Cochran distribution. 

2. The j.p.d, of the three n.s.f.'s EH~, EH~ and En3 

Suppose that in the group P1 the reciprocal vectors 
Ht, H2 and H3 are fixed and subject to the condition 

H ~ + H 2 + H 3 = 0 .  (1) 

For structures consisting of N identical point atoms, 
the n.s.f. En can be defined as 

N 

En = An + iBH = N -t/2 ~ exp (2zriH. rj). (2) 
j = l  

The magnitude [En[ and the phase ~Pn of En are 
assumed to be continuous random variables, denoted 
by R and • respectively. Following Karle & Haupt- 
man (1958), the j.p.d, of the phases (pH,, (PH. (P,~ and 

the magnitudes IE.,I, En21, IE~,3 of the three n.s.f.'s, 

P = P (~ I ,  qb2, qb3, R,, R2, R3), (3) 

is written as a sixfold integral 

P= [ RIR2R3/ (27r) 6] 7 
pl ,P2,P3 = 0  01 ,02 ,03=0  

PlP2P3 

xexp [ - i  ~ 

X C(01, 02, 03, p], P2, P3) d0] d02 d03 dpl dp2 dp3, 

(4) 

while the c.f. C(Ot, 02, 03, p~, /22, /93) c a n  be written 

with 

N 

c(o,,...,p3)= lq cj (5) 
j = l  

In contrast with the method used by Karle & Haupt- 
man (1958), averaging over a reciprocal vector, the 
average in (6) is over all possible positions of the 
atom labelled j. [See Appendix II for a short deriva- 
t i fn of (4)-(6).] 

After the evaluation of the average in (6), see 
Appendix II, the following expression for cj is 
obtained. 

Cj= ~ (-i)nJn(N-]/2pl)Jn(N-1/2p2)Jn(N-l/2p3) 
I I = - - c o  

x exp I-in(01 + 02 + 03)] (7) 

with n an integer and J, the nth-order Bessel function 
(see Appendix I). 

Thus, the c.f. c ( 0 b . . . ,  P3) (5) consists of an N-fold 
product of summations (7), which can be written as 
an N-fold summation. 

co 

C= ~ ( - i ) "  exp[-im(Ot+02+03)] 
F/i,..., fIN = --CO 

with 

N 3 

x 1-1 11 J. , (N- '" :p, . )  (8) 
/ = 1  v = l  

PC 

m = ~ nt. (9) 
t = l  

Now substitute (8) into (4) and integrate over 01, 02 
and 03 using (I.7). In view of (8) and (9) a summation 
over m can be defined first, while next, for each value 
of m, summations over nl, • • . ,  nN are performed such 
that (9) is satisfied. This results in 

P = [ R1R2R3/ ( 2 7r ) 3] 
oo 

× ~" exp[-im(dp~+~E+~3)]h,,,(R1, RE, R3) 
m = - - o o  

(10) 
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with 

hm(R1, R2, R3) = 
t l l~. . .~nN = - - o o  i v = ,  

nl+n2+...+nN=m 

N } 
x H J,,,(N-'/2P~,) dp,, , (11) 

t = ,  

where the independence of the integrations over p,, 
P2 and P3 has been used. 

Equation (11) implies that three identical integra- 
tions have to be performed for each set of numerical 
values ( n , , . . . ,  nN) of the N-fold summation. This 
formula can be somewhat simplified by introducing 
different summation variables in the following way. 
Suppose that in a certain ( n , , . . . ,  nN) set the number 
of different n~ values is k (k ~ [1, N]). Denote these 
k different values by qx(A ~ [1, k]). Next denote by 
Ix the frequency of qx in a certain ( n b . . . ,  nN) set. 
Thus, 

k 

5", lx = N (12) 
X = l  

and 

k 

E qxlx = m. (13) 
X----, 

In (11) the number of ( n , , . . . ,  nN) sets which reduce 
to the identical product 

3 k 
H H [Jq~(N-'/2P,,)] 1~ 

v = ,  X= l  

can be calculated, using combinatorics, as 

COmq, l = N! Ix! (14) 

Hence, the N-fold summation in (11) is changed into 
summations over the total number of different values 
q, the actual values of q and the frequency I of these 
values q, leading to 

k co N 

hm(R1, R2, R3)= ~'. E )-'. COmq,/ 
X= l  qb...,qx = - o o  ll,...,/x=l 

x H [Jq,(N-~/2P,,)]l' dp~ (15) 
t----, 

under the conditions (9), (12) and (13). 
The integrations in (15) cannot be performed 

directly. Therefore, the approximation formula (I.8) 
has been used as well as (I.11). After integrating the 
approximate expression for (15), shown in detail in 
Appendix III, an expression for the j.p.d, can be 

derived, using (111.16), 

P( ~ 1 ,  t~2,  (J~3, R , ,  R 2 ,  R 3 )  

= (RIR2R3/7]'3) exp [ - R  2 -  RE 2 -  R 2] 

oo 

× ~ exp[--im(t~l+t~2 +c193)]gm(R1, R2, R3) 
m = - - o o  

(16) 

with 

gin(R,, R2, R3) 
k oo N 

= ~ Y~ Y~ comq,1 
X = ,  q t , . . . , q x  = - - o o  I t . . . . .  /x = ,  

x exp[R, . (1-D-2)]P~, . . (R~,D -~) 

x NO'+J'*)/ED "+~'*+2 H ( q, !)1' . (17) 
t = ,  

The variables /z, /z*, D and the function P~,,,. are 
given by 

X 

D - N E l,/(Iq, I + 1); 
t = ,  

E 
' r ~ 0  

(19) 
for ~ >- ~* and P~,~. = P.. , . .  

3. Conditional j.p.d, of the triplet phase sum ~3 = 
~PH, + ~PH~ + ~P~3 with H 3  - - H I  - H 2 ,  given the 

magnitudes IE, ,I, IE,,J and IE,,31 
Use of  inequality theory 

Denote by ~3 the random variable associated with 
the triplet phase sum ~3, 

~b3 = q~n, + q~H~ + q~H3, H3 = -HI  - H2. (20) 

The conditional j.p.d, of ~3 given the magnitudes 
IE ,l, and EH~] can easily be obtained from (16) 
using elementary statistics, 

P(~'3IR,, R2, R3) 
tad 

= L - '  ~ exp[-imalt3]gm(R,,R2, R3), (21) 
m=--oo 

L is the normalization constant. 
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A certain similarity between (16)-(17) and the 
Cochran distribution (1.17) can be observed when 
(1.17) is expanded using (I.6). The function 
gm(R1, R2, Ra) in (16) apparently plays the same role 
as the modified Bessel function in the Cochran 
expression. 

From Appendix III, g,, = g-m, thus 

P(aFaIR,, R2, R3) 

= L-l{ go(Rb RE, R3) 

+2 ~ gin(R1, R2, R 3 )  c o s  ( m a l t 3 )  . 
m=l 

The normalization constant L is defined as 

The integration path in (22), usually taken from -Tr 
to 7r, can be defined as follows. It is well known that 
the non-negativity of the electron-density function 
implies the existence of inequalities between structure 
factors (Karle & Hauptman, 1950; Goedkoop, 1950). 
A third-order case, expressed in E values, is 

Eo E-u, Eu~ 

Eu, Eo En~+u~ 

E-u~ E-n~-H~ Eo 
->0. (23) 

Expansion of (23) yields a restrictive condition for @3, 

cos ~b3 -> p (24) 

with 

p = (IE ,I = + = + IEH31 = -  N )  

x - ' .  (25) 

Ez -< Eo implies p < 1, while of course cos ~3 = P > 
-1.  If we denote by min (]Pl, 1) the smallest value of 
[p[ and 1, and introduce the notation 

X = arc cos [min (IP[, 1)] (26) 

the integration interval in (22) is 

[ - X , X ] .  (27) 

When p <--1,  there is no restriction on 03 and this 
interval becomes the commonly used interval 
[-Tr, or]. From (27) and (22) L is obtained, 

L = 2go(R1, R2, R3)X 
co 

-4- 2 ~ {[gm(R,, R2, R3) sin X]/m}.  (28) 
m = l  

From (21), (27) and (28) expressions for expectation 
values can be calculated, for example the expectation 
values of 1~31 and Igt3} 2 given the magnitudes IE,,,I, 

IE.21 and IEn3l: 

(I ~11R,,  R2, R3) 

= L -~ goX2+2 ~ gm{X sin (mX) /m  
m = l  

+[cos ( reX) -  1]/m2}) 

and 

(29) 

(I q'3121R,, RE, R3) 

= L  -~ goX3+2 ~ g, ,[X 2 s i n ( m X ) / m  
m = l  

+ 2 X  cos ( m X ) / m 2 - 2  sin (mX)/m3]}.  (30) 

From (29) and (30) the expression for the variance 
of I~1 is obtained in a standard way. 

The definition of the integration interval via (25)- 
(27) can also be used in connection with the Cochran 
distribution: (1.17) is easily integrated numerically 
from - X  to X. 

4. The calculation of the terms of the conditional j.p.d. 

For the calculation of (20), it appears to be helpful 
to have an expression for the order, i.e. the N depen- 
dence, of the terms in the series expansion (17). From 
(17) it can be concluded that the order of the terms 
of the series depends on comq.z and on 

N-~<,+,*) = N-~ X ~, =, Iq, ll, (31 ) 

Defining 

l ,=N,  i A = I  

q~=O and l l = N  - It, A>__2, A~[ / ,k ] ,  (32) 
t=2  

one can write COmq, l as 

N!/  l,! N -  l, [ forA->2 
t=2  ,=2  

E t=2 l, < N. Combination of this with provided that 
(31) gives the order of a term in (17): 

1 ~ (34) 
)~=1 

N -E, ~21,~31q,1-1) A -> 2. 

From (34) a few interesting calculation conditions 
can be observed for the case A -> 2. Suppose we want 
to include in our calculations all terms up to and 
including order N -sMAx, with 

A 

SMAX = ~. It( 3 q,I- 1), A >- 2 
,=2 (35) 

=0,  A = I .  
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Table 1. Maximum values of  qtl and l, in (35) for 
A =1 (SMAX=0.0)  and A-----2 ( t --2;  S M A X - 0 . 5 )  
and the cumulative number of  terms up to and including 

O ( N  -sMAx) in (21) 

Cumula t ive  n u m b e r  
S M A X  m a x  I m a x  Iq[ of  t e rms  in (21) 

0.0 N 0 1 
0.5 1 1 2 
1.0 2 1 4 
1.5 3 1 6 
2.0 4 2 10 
2.5 5 2 15 
3.0 6 2 22 
3.5 7 3 31 
4.0 8 3 45 
4.5 9 3 62 
5.0 10 4 85 

As the minimum value of ]qtl in (35) is one, the 
maximum obtainable I value equals 2 x SMAX. This 
means that at most 2 x SMAX n values of a certain 
( n l , . . . ,  nN) set are not equal to zero. The minimum 
value of l in (35) is one. This implies that the 
maximum individual [q[ value can be obtained from 
(35) as [ 2 x ( S M A X + I ) / 3 ] ,  i.e. the smaller nearest 
integer of 2 x (SMAX+ 1)/3. 

With these conditions, a two-step algorithm has 
been devised to calculate expectation values. The first 
step consists of generating expression (17) without 
using actual values for N and IEl's. In this step, for 
each term in (17) the values of/z , /z*,  D and other 
parts which depend on the q and I values are calcu- 
lated. Thus, in fact this first step consists of the 
derivation of the j.p.d. (16)-(17). Although this can 
be done by hand, it is unpractical to do so, and instead 
a computer program has been written which evaluates 
the values/~,/z* etc. of the terms in (17) and stores 
them on an internal or external device. The second 
step, the calculation of the expectation values, is now 
a simple summation, employing the already generated 
expression (17) and the current N and ]E[ values of 
a certain triplet. The maximum I ql and I values in 
(35) as well as the number of terms in (17) up to a 
certain SMAX value are shown in Table 1. When 
terms up to and including O ( N  -5) are included in 
the distribution, the computer time needed to calcu- 
late the expectation values is about the same as the 
time needed to calculate expectation values by 
integrating the Cochran distribution numerically. 

In Tables 2, 3, 4 and 5 test results are shown for 
four randomly generated equal-atom structures in 
space group P1. From comparison of the tables, it 
can be observed that the mean systematic difference 
Avl is considerably lower for the new distribution 
when compared with the Cochran distribution. As 
might be expected, this trend gets less strong when 
the number of atoms increases. The same observations 
can be made in the case of the mean absolute 
difference Av2, although these results are less sig- 
nificant. Comparable results have been obtained for 

Table 2. Cumulative means Av l  and Av2, both in 
mcycles, for a randomly generated equal-atom 

structure, N = 15, space group P1 

(Igt3l) ca lcu la ted  f r o m  (29) (New)  and  via numer ica l  in tegra t ion  
o f  (1.17) (Cochran ) .  E 3 =  IEMIEn2E_nt_n2IN -1/2. Strongest  200 
lEvi values used, IE,~I--- 1.23. 

U n d e r  N u m b e r  N e w  C o c h r a n  
l imit  E 3 tr iplets  A v l  Av2 A v l  Av2 

2-3 10 - 3  23 -16  27 
1-8 52 -14  28 -26  34 
1-6 103 -10  31 -23 36 
1.4 216 -12  34 -25  40 
1.1 481 -10  38 -24  43 
1.0 654 -12  41 -26  45 
0.9 857 -11 44 -26  47 
0.8 1092 - 8  48 -24  50 
0.7 1309 - 9  50 -25  52 
0.6 1501 - 9  53 -25 55 

Table 3. N = 2 5 ,  space group P1, Avl  and Av2 in 
mcycles 

Strongest  250 levi values  used,  IE~I~ 1"38. 

U n d e r  N u m b e r  N e w  C o c h r a n  
l imit  E3 tdp le t s  A v l  Av2 A v l  Av2 

1.7 35 -18  30 -28 36 
1.5 78 - 7  36 -17  39 
1.3 194 - 2  45 -12  48 
1-2 308 - 7  44 -17  47 
1.1 460 - 7  48 -17  52 
1.0 698 - 8  50 -19  54 
0-9 970 - 7  53 -18 57 
0.8 1298 - 7  55 -19  59 
0.7 1671 - 7  59 -19  62 

Table 4. N = 5 0 ,  space group P1, Avl  and Av2 in 
mcycles 

Strongest  250 IE.I values used, IE~I~ 1.59. 

U n d e r  N u m b e r  N e w  C o c h r a n  
l imit  E 3 tr iplets  A v l  Av2 A v l  Av2 

1-8 21 3 32 -3  30 
1.6 43 - 7  34 -13 35 
1.4 103 - 9  42 -16  44 
1.2 202 -13 45 -20  47 
1"0 446 - 7  53 -14  56 
0"9 666 - 4  58 -12  60 
0"8 867 - 4  61 -11 63 
0.7 1093 - 3  64 -10  66 
0"5 1214 -3  66 -10  68 

Table 5. N = 100, space group P1, Avl  and Av2 in 
mcycles 

Strongest  250 levi values,  I E H I ~  1.58. 

U n d e r  N u m b e r  N e w  C o c h r a n  
l imit  E3 tr iplets  A v l  Av2 A v l  Av2 

1.1 28 -11 46 -15  48 
1"0 44 -15  52 -20  54 
0"9 92 -11 57 -16  58 
0"8 175 - 4  70 - 9  72 
0.7 314 - 5  74 -10  75 
0"6 544 0 80 - 4  81 
0.5 834 - 2  84 - 6  85 
0"4 935 - 6  86 -10  87 
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Table 6. N = 30, space group P1, realistic model 
structure ( Kanters & van Veen, 1973; slightly 

modified) 

Strongest  300 IE~l values,  I E ~ l ~  1.43. 

Under  N u m b e r  New C o c h r a n  
limit E 3 tr iplets Av l  Av2 Avl  Av2 

2-3 25 + 1 26 - 6  26 
2-1 49 -1  29 - 9  29 
1.9 104 -11 32 -19 35 
1.7 201 -10 33 -18 36 
1.5 379 -14  34 -22 38 
1.3 692 -13 38 -23 42 
1.1 1181 -17 42 -27 46 
0.9 1952 -19 48 -29 52 
0.7 2690 -21 53 -31 58 
0.5 2852 -22 54 -31 59 

a realistic model structure in P1 [Kanters & van Veen 
(1973), changed into an equal-atom structure], shown 
in Table 6. 

It has been shown that it is possible to obtain 
reliable estimates of 1~3[ via a j.p.d, in a series- 
expansion form. However, the inclusion of a vast 
number of higher-order terms, successively calculated 
by a computer program, is essential to obtain 
sufficient convergence. It must be noted that, owing 
to the approximation as applied here, not all higher- 
order terms are present but a selection of them only. 
Our results show that this selection is broad enough 
to reach the same goal, a converging series. Our results 
show further that in particular the systematic differen- 
ces between the expectation values of 1~3l and the 
calculated l~3l values are lower for the new distribu- 
tion, when compared with the results obtained via 
the Cochran distribution. This may find future appli- 
cation in enantiomorph-specific procedures, such as 
those described by Olthof & Schenk (1981). 

Test results and conclusions 

As indicated in the Introduction, j.p.d.'s in a series- 
expansion form can suffer from insufficient conver- 
gence. The convergence of the distribution can be 
examined by looking at the changes in expectation 
values when higher-order terms are included in the 
distribution. In Table 7, the convergence of the distri- 
bution (21) can be observed for five examples via 
(]1//'3[) a n d  the expectation value and the 
variance of ~3.  It appears that when terms up to 
and including O(N -5) are present in the distribution 
no further significant changes in and 
occur. For comparison the values obtained via 
numerical integration of the Cochran distribution 
(I.17) are shown. 

Further numerical tests have been performed in 
order to compare the present distribution with the 
Cochran distribution. For both distributions the 
expectation values (]~3[) have been compared with 

the [1/¢31 values as calculated from the structure. The 
overall differences between ( ~ 3 )  and I g'3 on the 
basis of the structure can be examined via the cumula- 
tive averages, 

inm y mes 
T e t s  T r i p l e t s  

and 

A v 2 = {  l-~ets [ ~31 - (1 gr3l) } / 1 - , ~ ,  in mcycles. (37) 

Avl and Av2 can be interpreted as the cumulative 
systematic and cumulative differences 
respectively. In the summation of (36) and (37) 
only those triplets are included with an 
Eu~Eu2E_n,_u2]N -1/2 value above a certain limit. 

Sorting of the triplets on the basis of the variances 
02( gt3 ), as calculated from the distribution, instead 
of the [EH, EH2E_H,_.JN -~/z value yields a similar 
ordering of the triplets. 

The authors thank Dr C. H. Stam for helpful 
criticism regarding the manuscript. The authors also 
thank one of the referees in particular whose valuable 
criticism helped to improve the quality of this 
paper. 

APPENDIX I 

Basic formulas 

The generating function for the Bessel functions of 
the first kind and order n, J,,(Z), is 

e x p [ ( Z / 2 ) ( t - 1 / t ) ] =  ~ t"J,(Z), (I.1) 
n ~ - - o o  

n integer (Watson, 1952, p. 14). Substitution of t = 
i exp (iq~) in (I.1) yields (Watson, 1952, p. 22) 

exp [iZ cos ~p] = ~ inJ,,(Z) exp [inq~]. (I.2) 
11 = - - ~  

If t is chansed into - t  -1 in (I.1) (Watson, 1952, p. 15), 

J_ , (Z)=(-1)nJ , (Z) ,  (I.3) 

n integer. Expansion of (I.1) in ascending powers of 
Z leads to (Watson, 1952, p. 40) 

oo 

J , , (Z)=  ~ (-1)m(Z/2)"+Em/m!(n+m)! (I.4) 
m = 0  

The modified Bessel function of the first kind, In (Z), 
is defined as (Watson, 1952, p. 77) 

I , (Z)  = i-nJn(iZ). (1.5) 
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Table  7. Convergence of (21) monitored via (1~3) and or2(¢31) calculated from (29), tr2(l~3 ) from (29) 
and (30), both containing terms up to and including O ( N  -sMAx) 

(I gr3[) and o'2(I gta[) of Cochran distribution calculated via numerical integration of (II.12). (1 ~31)in rad x 1000/2#, rounded off. or2([ gtal ) 
in squared rad x1000/21r, rounded off. p calculated from (25). 

N=25 A B C D E 
I~.,I 1"50 2-0 2"5 2-5 3"0 

IE.~I 1"50 2"0 2-5 3"0 3"0 
I~--,--~I 1.5o 2.0 2.5 3"0 3"0 

N-1/2[EH1EH2E_HI_H2I 0"675 1"60 3" 125 4"5 5"2 
p --13"52 --4"06 --1"00 --0.08 0"192 

SMAX 0.5 1.0 1.5 2.0 2.5 3.0 3-5 4.0 4.5 5.0 Coehran 
A (I gt3l> 115 127 125 125 125 125 125 125 125 125 136 

o'2(I g"31) 17 70 68 68 69 69 69 69 69 69 78 
a <1~1> -37 103 68 69 68 68 68 68 68 68 78 

°'2([ ~3[) -385 83 12 22 20 20 20 20 20 20 25 
C ([ gt3[) -238 148 9 58 44 45 44 44 44 44 53 

0.~(l~d) -1363 169 -129 36 2 10 8 8 8 8 11 
D <1%1> 99 68 49 44 42 38 36 36 36 35 43 

O"2(11//3[ ) 27 10 1 5 8 5 4 5 5 5 7 
E <1%1> 92 72 54 43 38 36 34 33 32 32 39 

0.2(1 g"31) 22 15 7 2 3 5 5 4 4 4 6 

App l i ca t i on  of  (1.5) to (1.2) leads  to 

co 

exp [ Z  cos ~0] = ~ I,(Z) exp [into]. (1.6) 
rl =--OO 

F r o m  (I.2), wi th  the  p rocedu re  o f  Wa t son  (1952, p. 20) 

21r 

exp [ i Z  cos(O-~o)-imO]dO 
o 

= 2~ri m exp [-im~o]Jm(Z). (I.7) 

For  smal l  va lues  o f  Z, J,(Z) can be a p p r o x i m a t e d  
(Watson ,  1952, p. 421) by  

J,(Z)=[(Z/2)"/n!]exp[-Z2/4(n+ 1)], (1.8) 

for  smal l  Z. 
The  W e b e r - S o n i n e  in tegra l  (Watson,  1952, p. 393) 

is g iven b y  

co 

J~(at) exp [-p2t2]t~-I dt 
0 

= {F[(  v +/~ ) /2 ] (  a/Ep)"exp(-a2/4p2)/Ep"r( v + 1)} 

x 1Fl[(v-/z)/2+ 1; v +  1; a2/4p 2] (I.9) 

for  Re(v+lx)>O;[arg(p)[<~/4. The conf luen t  
hype rgeome t r i c  func t ion  1F~(-n; a + 1; x)  is re la ted  
to the genera l i zed  Laguer re  p o l y n o m i a l  L'~(x) via 

n!F(a+l)  .~ 
1 F l ( - n ;  a + 1; x ) =  ~ t ~ + n - - - i - )  L, ,(x) .  (I.10) 

(I.9) can there fore  be  rewri t ten  as 

J~(at) exp [-p2t2/4]t~'-I dt 
o 

= {2f*- '[( / ,  - v)/2-1]l a"/p '*+'} 

x e x p  [-a=/p2]L'(,,_,,)/2_~ (a2p-2). (1.11) 

A pa r t i cu la r  case o f  (1.11) is g iven by 

J,(at) exp [-p2t2/4]t "+1 dt 
o 

=[2"+la"/(p2) "+1] exp [-a2/p2]. (1.12) 

Ln(1  + x )  can  be  wr i t ten  

L n ( l + x ) =  ~ (-1)"x"+I/(n+l) 
ri=0 

for  x[ < 1 or x = 1. (1.13) 

A n  e l e m e n t a r y  t r igonomet r i c  f o r m u l a  ( H a u p t m a n ,  
1971) is 

~Ax exp{i(~p+ax)}=xexp{i(¢+~)} (I.14) 
h 

with  

1 1 / 2  

x= ~ AxA~ cos ( a x - a ~ ) J  (1.15) 
A,p. 

a n d  

xexp(i¢)=~Ax exp ( iaa) .  (I.16) 
a 

The Cochran distribution (Cochran, 1955) is 

P(~3IRI,  R2, R3[) 

= L -1 exp [2RIR2R3 N-l~2 cos ~3], (I.17) 

wi th  the  no ta t ion  L n o r m a l i z a t i o n  constant ,  ~3 ran-  
d o m  var i ab le  assoc ia ted  wi th  the t r iplet  p h a s e  sum,  
Ri r a n d o m  var i ab le  assoc ia ted  wi th  the abso lu te  va lue  
o f  the n.s.f. Ei. 
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APPENDIX II 

Brief derivation of equations (4)--(6) 

Denote by X and Y the random variables associated 
with the real and imaginary parts An and Bn, respec- 
tively, of a n.s.f. EH. According to the notation of 
Karle & Hauptman (1958), the expression for the 
j.p.d, of An,, AH2, An~, Bn,, Bn~ and Bn~ can be written 

P(X,,XE, X3, I:1, I:2, Y3) 

= (2,rr) -6 ~ exp - i  Xvx,, + Y~,y,, 
Xl,X2,x3 ,Yl,Y2,Y3 = --oo v = 1 

X C ( X l ,  x 2 ,  x 3 ,  Yl, Y2, Y3) 

x dxl dx2 dx3 dyt dy2 dy3. (II.1) 

The expression for the c.f. C(Xl, . . . ,  Y3) is 

C ( x 1 ,  x 2 ,  x 3 ,  Yl, Y2, Y3) 

= ~ exp + i X,,x,, + Y,,y,, 
X,,. . . ,  Y3-- - o o  v = l  

x P ( X , , . . . ,  Y3) d X , , . . . ,  d Y3 

=(exp [i f~=l(AHX,,+ BH.y~)])atomiecoord. (II.2) 

The average in (11.2) is over all possible positions of 
the atomic coordinates, the p.r.v.'s. Substitute (2) into 
(11.2) and assume that the p.r.v.'s are independent of 
each other. Then, 

C(x1, . . . ,  y3) 

= ~ exp iN -1/2 [x~, cos (27rH~. ri) 
j =  1 

+yv sin (2"trHv. r j ) ] } )  rj. (11.3) 

The average in (11.3) is over the possible positions of 
each atom separately. 

After application of transformations from Car- 
tesian to polar coordinates, 

X, = R~, cos @,, Y~ = R~ sin @~ 
x, = p~ cos 0~, y~ = p~ sin 0~, (II.4) 

(II.1) is changed to (4), and (11.3) to (5). 

Derivation of ci, expression (7) 

Employing (I.2) and H 3 = - H  l-H2, one can write 
(6) as dO 

• n + n  + n  - -1 /2  Cj = E ! , 2 3Jnt( N pt)Jn2(N-1/2p2 
ril,n2,n3 ~ --o0 

X Jn3  ( N - 1 / 2 p 3 )  exp [-i(nlOt +//202 + / / 3 0 3 ) ]  

x (exp {2~rirj. [Hi(n1 -//3) 

+ H2(n2 - n3)]}) rT. (II.5) 

The average in (11.5) can be evaluated by integrating 
(11.5) over x~, y~ and zj using the integration interval 
[0, 1], assuming independence of and uniform 
distributions for xj, yj and zj. 

In general, the integrations in (II.5) yield zero, 
unless 

Hl(nl-n3)+H2(n2-n3)=O. (11.6) 

If one excludes the possibility of a linear dependence 
for H~ and HE, the only non-zero contribution in 
(ll.5) is for 

nl = n2 = n3. (11.7) 

Hence, the threefold summation in (11.5) is reduced 
to a single summation and (7) is obtained. 

APPENDIX III 
00 A 

The calculation of ~ pJm(pR) 1-I [J~,(N-1/2p)| z' dp 
0 t = !  

For the calculation of 

co A 

pJm(pg) N Uq,(N-1/2p)]" dp, (1II.1) 
0 t = l  

with m defined in (13), it appears to be useful if m 
and all orders ql of the Bessel functions in (III.1) are 
positive. Let us deal with m-> 0 (I) and m < 0 (II) 
separately. 
I. m --- 0. With respect to the q values two possibilities 
exist. 

(a) All q1>-O for t~[1 ,  A]. All orders m and ql 
positive, (III.1) remains unchanged. 

(b) Some q1<0, t~ [1 ,  A]. Let us divide the 
summation (13) into three parts: 

m =Y~ q1,1,,+~ qt2at2+Y, qlf112 (III.2) 
t, 12 12 

in which the summation over h involves all negative 
q values. Both the second and the third summations 
run over all positive q values. The rational positive 
coefficients a, 2 and fl,2 add up to 1,2. The zero-q-value 
term does not contribute to m and has therefore been 
omitted. Select now a12 and/3, 2 such that 

q1,1,, + ~ q12a12 = O. (111.3) 
t l  f2 

This expression is equal to 

- y~ lq,,ll,,+ y~ [qJ%=o. (III.4) 
fl 12 

Hence, (III.2) reduces to 

m = ~, q,:~,2 = ~, Iq, 1/31  >- o.  (111.5) 
I2 12 

Equations (111.4) and (111.5) imply that 

A 

Y Iq, ll, = Y Iq,,ll,,+ Y Iq,J% + Y IqJ~12 
t = 1 11 t2 12 

= 2 X [q,,[lt,+ m.  (III.6) 
tl 
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Employing (I.3) and (III.6), one can write (III.1) as 
co A 

(-1) (y~':'lq'l'-m)i2 I PJImI(P R) 1-I [JI,~,I(N-'I2p)] '' dp, 
0 t = l  

A 

m = ~ qtilt. (III.7) 
t = l  

Evidently, the case that all q values are positive is 
included in (III.7) as well. 
II. m < 0. Application of (I.3) to (III.1) yields 

(-1)"(-1) z~:'q/' 7 PJImI(P R) ~ [J-q,(N-ii2p)] ' 
0 /=1 

co A 

= ~ PJIml(P R )  rI [J-q , (N-Xl2p)]  l' do  ( I I I .8)  
0 t = ,  

because of (13). Obviously, (111.8) can be treated 
along the lines of case I, again resulting in (III.7). 

It remains to integrate (III.7). This equation can 
be transformed into a directly integrable form by 
application of the approximation formula (I.8), 

(III'7)~--{(-1)(s-m)12/2sN~/2~I,--i ([qi !)l'} 

oo 

X ~ pS+iJm(pR ) exp  [ - p 2 D 2 / 4 ]  do  ( I I I .9)  
0 

where we have introduced the variables 
A 

s =  5", Iq, ll, (III.10) 
t = l  

and 
A 

D 2 = N -1 Y. l,/(Iq, I + 1). (III.11) 
t = l  

The remaining integration in (III.9) can be per- 
formed using (I.11), resulting in 

{2x (--1)(s-m)/2[(S - m)/2]![R/  O] m exp [ - R 2 /  D2]} [ ]1 
x NS/2D s+2 I-[ (Iq, !)" L~-m)/2[R2/D2] 

t = l  
(III.12) 

with Lcm_m)/2 the associated Laguerre polynomial. 
After the introduction of new variables, 

t z = ( s + m ) / 2 a n d l z * = ( s - m ) / 2  (III.13) 

and the function P~,,~.(RD-'), 

P~,~.(nD -1) 
=(-1) '*Iz*!(R/D)~'-~*L~.~*(R2D -2) (III.14) 

for/z >/z*, P~.~. = P~,,~,., the final result is 

co A 

pJm(pR) l-I [Jq,(N-i/2p)] l' dp 
0 t = l  

= {2 exp [ -g2 /D2]  P~,,~,.(RD-X)} 

x N(~'+~'*)/ED ~+~'*+2 l-I (Iq, l!)" 
t----1 

(III.15) 

P~,,~,.(RD-') is the same function as R~n.(E) which 
was introduced by Naya, Nitta & Oda (1965). 
Examples and numerical values can be found in their 
Appendix V, Tables 2 and 3. Explicit expressions for 
P~,,~,.(RD -1) can be generated by means of their 
formula (IV-7), 

P,.~.(RD-')= ~ (-I)',! (RD-') "+~*-2" 
¢---=0 

(III.16) 

(/z __/z* and P,;,. = P~.,). 

References 

BERTAUT, E. F. (1956). Acta Cryst. 9, 455-460. 
BERTAUT, E. F. (1960). Acta Cryst. 13, 546-552, 643-649. 
CASCARANO, G., GIACOVAZZO, C., CAMALLI, M., SPAGNA, R., 

BURLA, M. C., NUNZI, A. & POLIDORI, G. (1984). Acta Cryst. 
A40, 278-283. 

COCHRAN, W. (1955). Acta Co~st. 8, 473-478. 
GIACOVAZZO, C. (1974). Acta Cryst. A30, 626-630. 
GIACOVAZZO, C. (1977a). Acta Co~st. A33, 50-54. 
GIACOVAZZO, C. (1977b). Acta Co~st. A33, 527-531. 
GIACOVAZ70, C. (1980). Direct Methods in Crystallography. 

London: Academic Press. 
GOEDKOOP, J. A. (1950). Acta Co~st. 3, 374-378. 
HAUPTMAN, H. (1971). Z. KristaUogr. 134, 28-43. 
HAUPTMAN, H. (1972). Crystal Structure Analysis: The Role of the 

Cosine Semi-invariants. New York: Plenum Press. 
HAUPTMAN, H. (1975). Acta Co~st. A31, 671-679. 
HAUPTMAN, H., FISHER, J., HANCOCK, H. & NORTON, D. A. 

(1969). Acta Co~st. B25, 811-814. 
HAUPTMAN, H., FISHER, J. & WEEKS, C. M. (1971). Acta Co~st. 

B27, 1550-1561. 
HEINERMAN, J. J. L. (1977). Acta Co~st. A33, 100-106. 
HEINERMAN, J. J. L., KRABBENDAM, H. & KROON, J. (1977). 

Acta Co~st. A33, 873-878. 
HEINERMAN, J. J. L., KRABBENDAM, H., KROON, J. & SPEK, 

A. L. (1978). Acta Co~st. A34, 447-450. 
KANTERS,  J. A .  & VAN VEEN,  A.  M.  (1973). Co~st. Struct. Commun. 

2, 261-265. 
KARLE, J. (1972). Acta Co~st. B28, 3362-3369. 
KARLE, J. & GILARDI, R. D. (1973). Acta Cyst. A29, 401-407. 
KARLE, J. & HAUPTMAN, H. (1950). Acta Co~st. 3, 181-187. 
KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635-651. 
KARLE, J. & HAUPTMAN, H. (1958). Acta Co~st. 11, 264-269. 
KLUG, A. C. (1958). Acta Co~st. 11, 515-543. 
K R O O N ,  J. ,  SPEK,  A.  L. & K R A B B E N D A M ,  H.  (1977). Acta Co~st. 

A33, 382-385. 
NAYA, S., NITrA, I. & ODA, T. (1965). Aeta Cryst. 19, 734-747. 
OLTHOF, G. J. (1981). Thesis, Amsterdam. 
OLTHOF, G. J. & SCHENK, H. (1981). Acta Co~st. A37, 684-689, 

689-691. 
OLTHOF,  G .  J. ,  S INT,  L. & S C H E N K ,  H. (1979). Acta Co~st. A35, 

941-946. 
PESCHAR, 1L & SCHENK, H. (1986). In preparation. 
POST, B. (1977). Acta Co~st. A33, 90-97. 
POST, B. (1979). Acta Co~st. A35, 17-21. 
TSOUCARIS, G. (1970). Acta Co~st. A26, 492-499. 
WATSON, G. N. (1952). A Treatise on the Theory of Bessel Functions. 

Cambridge Univ. Press. 


